bigstonedragon (bigstonedragon) wrote,
bigstonedragon
bigstonedragon

Диалектический перепост: парадоксы бесконечности

И ещё из себя же, любимого, восьмилетней давности. Банально, но, похоже, достойно повторения :-)

Оригинал взят у bigstonedragon в О бесконечном. Математические основы диалектики

Большинство труднопостижимых загадок и «парадоксов» и в науке, и в философии связаны ИМХО именно с бесконечностью. Пока мы остаемся в рамках конечных, замкнутых систем – все просто, наглядно, понятно, но зато и пессимистично: «тепловая смерть», предсказуемость и предопределенность, механистичность и алгебраичность. Пока мы остаемся в рамках замкнутых систем, нет места «звездному небу» или «уроку гармонии», «свободе воли» и «обширному полю сознания».
Возможно, именно в способности аппелировать к бесконечности и заключается основное достижение человеческого разума [Вспомним Поршнева с его "способностью к абсурду", добавляю я от себя сегодняшнего!]?
А бесконечность полна парадоксов. Именно они, пожалуй, больше всего запомнились мне из всего курса математики в школе и универе.

sin_gular в обсуждении поста http://kosilova.livejournal.com/595991.html пишет: …И вот что я подумал - все таки вся человеческая математика основана на понятии натурального числа. На дискретности и анизотропности. Видимо так интуитивно работает мозг. Базовым математическим объектом для нас оказалось натуральное число.
Но ведь даже натуральный ряд (1, 2, 3, …) – это уже простейшая из возможных бесконечностей.
И она уже дает нам множество парадоксов.

1. Бесконечность + бесконечность = та же самая бесконечность.
Ну, вот первый из парадоксов. Возьмем не натуральные числа, а целые: то есть добавим к натуральному ряду ещё «0» и отрицательные числа. Казалось бы, общее количество чисел должно было увеличиться вдвое; но на самом деле, их осталось столько же! Потому как целые числа можно перенумеровать так же, как натуральные. Вот:
1 – 0
2 – 1
3 – -1
4 – 2
5 – -2
6 – 3
и т.д. То есть взяв любое целое число, мы однозначно сможем сопоставить ему натуральное, и наоборот. Целых чисел – столько же, сколько и натуральных!
И сколько ни прибавляй к бесконечности бесконечность, все равно в результате будет ТА ЖЕ САМАЯ бесконечность! Ну, не хочет она увеличиваться, и всё тут!

2. «Бесконечность» умножить на «бесконечность» = та же самая «бесконечность»!
Но этого мало. Возьмем теперь не целые числа, а рациональные – то есть всевозможные дроби, полученные путем деления одного целого числа на другое.
Казалось бы, их должно быть в бесконечное число раз больше, чем количество целых чисел. Ну, возьмем, к примеру, такое сопоставление:
1 – 1;
2 – ½;
3 – 1/3;
4 – ¼;
5 – 1/5;
и т.д.
Казалось бы, мы взяли лишь малую толику рациональных чисел – только между 0 и 1 и только такие, где в числителе стоит «1»; а их уже оказалось столько же, сколько всех целых чисел, вместе взятых! Значит, в общей сложности, рациональных чисел должно быть в бесконечное число раз больше, чем целых!
А вот получается, что на самом деле это вовсе не так. Потому что рациональные числа на самом деле тоже можно перенумеровать, точно так же, как и целые!
Вот, смотрите. Давайте выстроим такую вот перевёрнутую «числовую пирамиду»:
1-й этаж – 0;
2-й этаж – 1/1 (=1);
3-й этаж – ½ ; 2/1 (=2);
4-й этаж – 1/3 ; 3/1 (=3);
5-й этаж – ¼ ; 2/3 ; 3/2 ; 4/1 (=4);
и т.д.
Т.е. на каждом «этаже» пирамиды располагаются те дроби, в которых сумма числителя и знаменателя равна номеру «этажа» пирамиды!
Не буду приводить доказательств, но таким образом можно перенумеровать все рациональные числа – то есть даже перемножив «бесконечность» на саму себя, да ещё не один раз, мы в итоге получили ТУ ЖЕ САМУЮ бесконечность!

3. Бесконечность больше бесконечности.
Но даже и на этом парадоксы всё-таки не заканчиваются.
Казалось бы, всё, дальше ехать некуда, больше найденной нами «бесконечности» ничего уже быть не может.
А вот оказывается, вовсе и не так!
Потому как «рациональные» числа – это вовсе даже не все числа, какие есть в природе.
И, как оказывается, даже не большая их часть.
Потому как кроме «рациональных чисел», каждое из которых можно представить в виде дроби, в числителе и знаменателе которой – целые числа, существуют ещё числа «иррациональные», в виде простых дробей не представимые. Любое рациональное число можно записать в виде периодической десятичной дроби; иррациональные числа – это бесконечные непериодические десятичные дроби. Наиболее известным представителем таких чисел является число «пи» - отношение длины окружности к её диаметру.
Так вот, я не помню уже доказательств (прошу поверить мне на слово), но иррациональные числа перенумеровать принципиально невозможно – их количество оказывается БОЛЬШЕ, чем количество целых чисел! Математически первая из рассмотренных мною бесконечностей (набор целых чисел) принято именовать счетной, вторую (иррациональные числа) - несчетной.
Насколько я помню, для сравнения «бесконечностей» между собой используется понятие «мощности»; и насколько я помню, этих самых «мощностей» опять таки может быть бесконечное количество :-)

Tags: Диалектика
Subscribe

Posts from This Journal “Диалектика” Tag

promo bigstonedragon january 5, 2014 03:46 36
Buy for 20 tokens
Ещё в сентябре yasnaya_luna «осалила» меня таким флэшмобом: рассказать 11 фактов о себе, ответить на 11 вопросов и задать другие 11 вопросов такому же количеству друзей. Труднее всего мне лично оказалось написать 11 фактов о себе. К тому же результат получился каким-то уж чересчур…
  • Post a new comment

    Error

    default userpic

    Your reply will be screened

    When you submit the form an invisible reCAPTCHA check will be performed.
    You must follow the Privacy Policy and Google Terms of use.
  • 2 comments